Python Tutorial 2
LING-381-Language Technology and LLMs

Instructor: Hakyung Sung
September 11, 2025

Review: Tutorial 1

How to learn to ride a bike is ...

Review: Tutorial 1

to actually ride a bike.

Review: Basic value types

Python has several basic types of values. The most common include:

- Strings (text)

Review: Basic value types

Python has several basic types of values. The most common include:

- Strings (text)

- Integers (whole numbers)

Review: Basic value types

Python has several basic types of values. The most common include:

- Strings (text)
- Integers (whole numbers)

- Floats (decimal numbers)

Review: Basic value types

Python has several basic types of values. The most common include:

- Strings (text)
- Integers (whole numbers)
- Floats (decimal numbers)

- Booleans (True and False)

Review: Basic value types

Python has several basic types of values. The most common include:

- Strings (text)

- Integers (whole numbers)

- Floats (decimal numbers)

- Booleans (True and False)

- None (represents “no value”)

re values

Values

» Store values of any type.

la "thing is a string"
2b =29

3¢ = 3.2

1 print (b+c)

5% 12.2

1print (a+"!")

5% thing is a string!

Functions

1 print("Hi!")

len("ab

str(16)

int(3.9)

iables using this function

Review: Methods

Methods

1 sample = "This is a STRING"

1 sample. lower()

'this is a string’

1 sample. lower().split(" ")

['this', 'is', 'a', 'string'l

1 sample = "This, is, a, STRING"

1 # How can we mo y this line?

['this', 'is', 'a', 'string']

view: Membership test

Membership test

* Usethe in operator to check if a substring exists:

1word = "awesome"
2

3 if "a" in word:

4| print ("Contains

5 else:

6 print("No 'a' found.")

5% Contains 'a'!

Tip: use elif for checing additiona conditions

« elif = "else if"
* Used to check additional conditions after an initial if statement.
+ only checked if the first condition was False

1word = "awesome"

3 # we now want to ch

4 if "a" in word

5| print (“"Contains

6 elif "e" in word

7 print ("Contains

8 else:

9 print("No 'a' or found.")

% Contains 'a’

view: for and while loop

>]

1words = [" » "code", 'rep

2
3 for w in words:
4 print(w)

read
code
repeat

1 for w in words:
2 if " in
3 print(w)

read
code
repeat

1 count = @

2 while count < 3:
3 print(count)
4 count += 1

1lwhile w in word:
2| print{w);

Review: Tuple

3. tuples, dictionaries, functions, classes, save into files

1# Create and concatenate
2t = (1, 2)

t=t+ (3, 4)
4 print(t)

(1, 2, 3, 4)
1# Indexing and slicing
2 print(t[e])
3 print(t[-1]}
4 print(t[1:3])

1

4
(2, 3)

1 # Unpacking

2x, y, *xrest = t

3 print(x, y, rest)

4 # Explanation:|

5# x gets the first value (1), y gets the second value (2),

6 # and *rest collects all the remaining values into a list - [3, 4].

12 (3, 4]

1*begin, last = t
2 print(begin, last)
3

4 first, smiddle, last = t
5 print(first, middle, last)

view: Working with files

12
Files

B c bR ~ Working with files
[—
» [sample_data 7 1 data = ["apple",
B fruitstxt z
. 3 with open("fruits.t , encoding="utf-8") as f:

4 for fruit in E
5 fuwrite(fruit + "\n")

1 ipwd #check your working dire

5% /content

1 !1s #ch r files in the king directory

Tutorial 2

- We often collect text data from the web.

1

Tutorial 2

- We often collect text data from the web.

- Raw text can be messy: strange symbols, broken characters, odd
formatting.

1

Tutorial 2

- We often collect text data from the web.

- Raw text can be messy: strange symbols, broken characters, odd
formatting.

- If we put messy text into a DataFrame, it may look confusing or
inconsistent.

1

Tutorial 2

- We often collect text data from the web.

- Raw text can be messy: strange symbols, broken characters, odd
formatting.

- If we put messy text into a DataFrame, it may look confusing or
inconsistent.

- First step: clean the text so that we can work with it safely.

1

Tutorial 2

- We often collect text data from the web.

- Raw text can be messy: strange symbols, broken characters, odd
formatting.

- If we put messy text into a DataFrame, it may look confusing or
inconsistent.

- First step: clean the text so that we can work with it safely.
- After cleaning, we can move on to:
- Tokenization

1

Tutorial 2

- We often collect text data from the web.

- Raw text can be messy: strange symbols, broken characters, odd
formatting.

- If we put messy text into a DataFrame, it may look confusing or
inconsistent.

- First step: clean the text so that we can work with it safely.

- After cleaning, we can move on to:

- Tokenization
- Lemmatization

1

Preview

- Tokenization: Converting raw text into tokens (words,
punctuation, numbers). Essential for breaking text into
analyzable units.

Preview

- Tokenization: Converting raw text into tokens (words,
punctuation, numbers). Essential for breaking text into
analyzable units.

- Lemmatization: Converting each token to its base (dictionary)
form.

Preview

- Tokenization: Converting raw text into tokens (words,
punctuation, numbers). Essential for breaking text into
analyzable units.

- Lemmatization: Converting each token to its base (dictionary)
form.

- Frequency Calculation: Counting token/lemma occurrences in a
text.

Preview

- Tokenization: Converting raw text into tokens (words,
punctuation, numbers). Essential for breaking text into
analyzable units.

- Lemmatization: Converting each token to its base (dictionary)
form.

- Frequency Calculation: Counting token/lemma occurrences in a
text.

- Concordance: Displaying each occurrence of a word/phrase with
its surrounding context.

Preview

- Tokenization: Converting raw text into tokens (words,
punctuation, numbers). Essential for breaking text into
analyzable units.

- Lemmatization: Converting each token to its base (dictionary)
form.

- Frequency Calculation: Counting token/lemma occurrences in a
text.

- Concordance: Displaying each occurrence of a word/phrase with
its surrounding context.

Now, let's get our hands dirty!

